Using a hybrid preconditioner for solving large-scale linear systems arising from interior point methods

نویسندگان

  • Silvana Bocanegra
  • F. F. Campos
  • Aurelio R. L. Oliveira
چکیده

We devise a hybrid approach for solving linear systems arising from interior point methods applied to linear programming problems. These systems are solved by preconditioned conjugate gradient method that works in two phases. During phase I it uses a kind of incomplete Cholesky preconditioner such that fill-in can be controlled in terms of available memory. As the optimal solution of the problem is approached, the linear systems becomes highly ill-conditioned and the method changes to phase II. In this phase a preconditioner based on the LU factorization is found to work better near a solution of the LP problem. The numerical experiments reveal that the iterative hybrid approach works better than Cholesky factorization on some classes of large-scale problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioning indefinite systems in interior point methods for large scale linear optimisation

We discuss the use of preconditioned conjugate gradients method for solving the reduced KKT systems arising in interior point algorithms for linear programming. The (indefinite) augmented system form of this linear system has a number of advantages, notably a higher degree of sparsity than the (positive definite) normal equations form. Therefore we use the conjugate gradients method to solve th...

متن کامل

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

Preconditioning Indefinite Systems in Interior Point Methods for Large Scale Linear Optimization

We discuss the use of preconditioned conjugate gradients method for solving the reduced KKT systems arising in interior point algorithms for linear programming. The (indefinite) augmented system form of this linear system has a number of advantages, notably a higher degree of sparsity than the (positive definite) normal equations form. Therefore we use the conjugate gradients method to solve th...

متن کامل

A robust and efficient proposal for solving linear systems arising in interior-point methods for linear programming

The computational burden of primal-dual interior point methods for linear programming relies on the computation of the search direction by solving one or more linear systems per iterations. The objective of this work is to study an efficient and robust way of solving these systems for large-scale sparse problems. Our proposal combines the use of the stable system and a hybrid iterative method w...

متن کامل

On Inexact Newton Directions in Interior Point Methods for Linear Optimization

In each iteration of the interior point method (IPM) at least one linear system has to be solved. The main computational effort of IPMs consists in the computation of these linear systems. Solving the corresponding linear systems with a direct method becomes very expensive for large scale problems. In this thesis, we have been concerned with using an iterative method for solving the reduced KKT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2007